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Abstract—This paper surveys the potential of contextualized
AI in enhancing cyber defense capabilities, revealing significant
research growth from 2015 to 2024. We identify a focus on ro-
bustness, reliability, and integration methods, while noting gaps
in organizational trust and governance frameworks. Our study
employs two LLM-assisted literature survey methodologies: (A)
ChatGPT 4 for exploration, and (B) Gemma 2:9b for filtering
with Claude 3.5 Sonnet for full-text analysis. We discuss the
effectiveness and challenges of using LLMs in academic research,
providing insights for future researchers.

Index Terms—cyber security, artificial intelligence, retrieval
augmented generation, cyber defense strategy, meta-analysis

I. INTRODUCTION

Contextualized AI enhances traditional Artificial Intelli-
gence (AI) and Large Language Model (LLM) capabilities
by integrating private data, beyond typical public datasets
[1]. This emerging field finds application in autonomous
monitoring, threat detection, and response within secured
network environments [2], [3], [4], [5]. Yet, the full efficacy
of these systems is under ongoing evaluation with challenges
such as AI dependency, data privacy, human oversight, and
end-to-end governance [6], [8], [9], [10], [11], [12], [13].

Initially, we hypothesized such systems were ready for
widespread deployment in cyber security. However, we dis-
covered a complex landscape with diverse terminology and
approaches, leading us to do comprehensive literature review.
Given the vast amount of potentially relevant research and
the challenges in identifying pertinent studies, we decided
to experiment with LLM-assisted methods for our survey
while also providing us an opportunity to explore innovative
methodologies for academic research [14], [15], [16].

This paper aims to conduct a survey of the literature in
contextualized AI for cyber defense to answer:

1) RQ1: How can cyber security decision-makers strate-
gically leverage contextualized AI to enhance defense
capabilities while mitigating risks?

2) RQ2: Protection Layer: How can we ensure comprehen-
sive protection of the system, data, and processes when
implementing contextualized AI in cyber security?

3) RQ3: Security System Layer: How can we guarantee
that the AI-enhanced protection system itself functions
reliably and as expected?

4) RQ4: Organizational Layer: How can we foster organi-
zational trust in AI, ensuring that the organization can
confidently rely on AI capabilities within appropriate
scopes while maintaining necessary human oversight?

A. Definition of Contextualized AI

For this study, we define contextualized AI to be supplied
as part of the prompt to LLM as follows:

Contextualized AI refers to AI systems
designed to access and utilize proprietary
and domain-specific knowledge. While it is
not strictly generative AI and LLM, most of
the contextualized AI systems are built on
top of generative AI and LLM so pay attention
to the usage that involves further training
using proprietary or domain-specific knowledge
on top of pre-trained model. Some earlier
papers may mention full AI training using
private data, hence they should be considered
as contextualized AI systems too.

B. Paper Structure

Section II describes our method, including the use of LLM
tools, Section III discusses the findings from exploration
using GPT-4, Section IV and V discusses the findings from
literature screening using Gemma 2:9b and full-text analysis
using Claude 3.5 Sonnet, and Section VI summarizes all the
findings, including an analysis to the research methodology
we use, and recommends for the future research directions.

This paper presents two distinct methodologies for LLM-
assisted literature surveys: Method A using ChatGPT 4 for
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initial exploration and thematic analysis, and Method B com-
bining Gemma 2:9b for literature screening with Claude 3.5
Sonnet for full-text analysis. We compare these approaches to
demonstrate their effectiveness in processing large volumes of
academic literature efficiently.

II. METHODOLOGIES

We employ two distinct LLM-assisted approaches:
1) Method A: GPT-4 for initial exploration and thematic
analysis. 2) Method B: Gemma 2:9b for literature screening
and Claude 3.5 Sonnet for full-text analysis. See Fig. 1 for
the overview.

A. Method A: Exploration with GPT

Method A uses GPT-4 via ChatGPT to rapidly generate a
broad overview and identify key themes using the following
steps:

1) Input research questions and definitions into GPT-4.
2) Instructed GPT-4 to search for relevant literature.
3) Used consistent prompt structure for each of RQ:

{{Research Question}}

{{Definitions}}

Search online for relevant conference
papers and journal articles.

4) Prompted twice more with Find more for each query.
5) Collected and categorized provided sources.
Our exploratory review with GPT-4 returned 34 unique

sources without dead links, including 18 academic publica-
tions (52.9%), 12 industry reports (35.3%), 2 professional

Fig. 1. Methodology and Data Gathering

organization resources (5.9%), and 2 non-profit think tank
publications (5.9%). All the returned sources were publicly
accessible.

B. Method B: Systematic Review with Gemma and Claude

Method B employs a more systematic approach Gemma
2:9b and Claude 3.5 Sonnet for in-depth analysis [16], [21],
[22]. We chose Gemma 2:9b for literature screening due to
its efficiency in processing large volumes of text. Claude 3.5
Sonnet was selected for its ability to do full-text analysis of
academic papers using prompt engineering.

Literature Screening with Gemma 2:9b: We used LLAs-
sist, an LLM-based simplified screening tool with Gemma
2:9b backend (commit version 3bf51a6) [23]. LLAssist
streamlines literature reviews through the following process:

1) Data Input: Processes CSV files with article metadata
and abstracts, along with research questions.

2) Key Semantics Extraction: Extracts topics, entities,
and keywords from titles and abstracts using Natural
Language Processing (NLP).

3) Relevance Estimation: Assesses each article’s relevance
to research questions, providing scores (0-1) for rele-
vance and contribution, with 0.7 as the threshold between
false (below 0.7) and true (0.7 and above).

4) Must-Read Determination: Identifies ”must-read” arti-
cles based on relevance and contribution scores.

5) Output Generation: Produces JSON and CSV files with
detailed information for each article.

The process involved:
1) Querying the Scopus database with search string as

"artificial AND intelligence AND cyber
AND security" for 2015-2024. We use Scopus as
its result already includes IEEE and ACM databases.

2) To check if the abstract addresses one or more research
question we developed screening questions (SQ) for the
LLM prompt as below, followed by the definitions:
• SQ1: Does it discuss strategic factors for implementing

LLM-based or contextualized AI in cyber security
defense? [Definitions]

• SQ2: Does it mention methods for integrating such AI
into cyber security defense systems? [Definitions]

• SQ3: Does it address techniques for ensuring
robustness and reliability of these AI systems?
[Definitions]

• SQ4: Does it discuss organizational measures or gover-
nance frameworks for building trust in these solutions?
[Definitions]

3) Analyze relevance and contribution of papers based on
Gemma 2:9b’s scores, using 0.7 as the threshold.

In-depth Analysis with Claude 3.5 Sonnet: We con-
ducted a full-text review using Claude 3.5 Sonnet [22] with
prompting techniques [24]. The following prompt engineering
techniques are used: ”Prompt generator for the initial draft”,
”Be clear and direct”, ”Give Claude a role”, ”Prefill Claude’s



response”, and ”Long context prompting” [25]. We use the
following steps:

1) Filtering contributing papers from 2020-2024 with DOIs,
excluding non-Q1 journal articles.

2) Analyzing full-text PDFs using Claude 3.5 Sonnet.
3) Manual review for divergences between AI and human

interpretations. We read the paper title, abstract, introduc-
tion, and conclusion then compare with the LLM output
to check whether it is reasonably correct.

We used the following instruction prompt to guide Claude:
You are the research assistant. Given the
research article, explain concisely how
the paper addresses the following research
questions:

{{Research Questions}}

{{Definition of Contextualized AI}}

In your explanation, first read the title
and abstract, determine the type of the
paper, e.g. survey paper, and then read
the introduction and conclusion sections.
Indicate if you need also to read the
entire content of the paper. For each
point you make, give the exact reference
on where the original statement can be
found, i.e. page/section number and
paragraph. Strictly limit it to the actual
content of the paper itself. Put a note in
your explanation if the paper does not
address one or more RQ.

Your output will be:

{{Output Format}}

This prompt engineering approach is effective in extracting
relevant information and insights from full-text articles.

III. EXPLORATION WITH GPT-4

A. Key Findings

Our exploration with GPT-4 yielded valuable insights for
each research question, drawing from both academic and non-
academic sources:

1) RQ1: Strategic Leverage of Contextualized AI: Aca-
demic research highlights enhanced threat detection and adap-
tive defense [26], [27], automation of routine tasks [26], and
proactive threat prediction [27]. Industry perspectives empha-
size domain-specific models for improved threat recognition
[28], human-AI teaming for optimal decision-making [29],
and the importance of ethical considerations [26], [27], [55].

2) RQ2: Comprehensive Protection Strategies: Academic
sources advocate for deep learning in behavioral analysis
[33], [34] and integration of generative AI technologies [35].
Industry reports recommend persistent monitoring and real-
time analysis [30], [57], contextualized security measures
[31], AI-driven anomaly detection [30], and automation of
security processes [31], [58].

3) RQ3: Ensuring AI System Reliability: Academic re-
search focuses on robust system structures and reliability
assessment [36], recurrent events analysis for prediction [40],
and Scientific Machine Learning (SciML) for safeguarding
[40]. Industry and government initiatives emphasize enhanced
protection strategies like GREP [37], AI Systems Engineering
and Reliability Technologies (ASERT) [41], risk manage-
ment [38], and human-in-the-loop approaches with continuous
monitoring [39].

4) RQ4: Fostering Organizational Trust: Academic
sources stress transparency and explainability of AI systems
[46], [50], ethical considerations in AI development [53],
[54], and dynamic trust calibration mechanisms [44].
Industry perspectives highlight robust compliance and
security implementation [42], cultivating a culture of ethical
AI use [43], effective communication strategies [45], talent
development [47], [51], and stakeholder engagement with
policy advocacy [49], [55].

B. Common Themes

While academic and non-academic sources address similar
themes, the angles are different. Academic sources tend
to focus on theoretical frameworks, in-depth technical as-
pects, and long-term implications while non-academic sources
emphasize practical applications with market-orientation.
Across both academic and industry sources, common themes
emerged:

• Importance of human-AI collaboration [29], [48], [52]
• Continuous learning and adaptation [27], [39], [56]
• Ethical considerations and transparency [26], [55], [46]
• Balancing automation and oversight [31], [48] [59]
• Significance of contextual understanding in AI [28], [33]

IV. ANALYSIS OF GEMMA2:9B FILTERING RESULT

Our analysis, based on LLAssist’s output applied to Scopus
database results, uses a scoring system (0-1) for relevance and
contribution, with 0.7 as the threshold for classification. Tables
I and II summarize relevant and contributing papers from
2015-2024, respectively. Figure 2 visualizes the distribution
of both categories. In the tables, we define: 1) SQ: Screening
Question 2) R: Relevant papers, i.e. papers discussing topics
related to the screening questions 3) C: Contributing papers,
i.e. papers directly researching topics in the screening ques-
tions 4) Any SQ: Papers relevant to or contributing to at least
one screening question 5) All SQs: Papers relevant to or
contributing to all screening questions

The relevance criterion assesses whether a paper discusses
topics related to our research questions, while the contribution
criterion evaluates whether a paper directly researches these
topics. We use a score threshold of 0.7 for both criteria to
determine if a paper is considered relevant or contributing.
The analysis reveals significant growth in research attention,
with relevant papers increasing from 5 (2015) to 150 (2024),
and contributing papers from 0 to 25 over the same period.



TABLE I
DISTRIBUTION OF RELEVANT PAPERS (R) BY YEAR AND SQ

Year Total Any SQ All SQs SQ1 SQ2 SQ3 SQ4
2015 81 5 0 2 2 3 0
2016 125 6 0 1 2 5 2
2017 167 5 1 3 1 4 1
2018 255 14 2 9 9 8 3
2019 315 32 1 19 10 21 3
2020 380 63 3 31 30 46 13
2021 485 50 9 31 29 36 12
2022 720 88 5 40 51 61 12
2023 1078 193 18 92 116 105 41
2024 625 150 27 87 102 87 44
Total 4231 606 66 315 352 376 131

TABLE II
DISTRIBUTION OF CONTRIBUTING PAPERS (C) BY YEAR AND SQ

Year Total Any SQ All SQs SQ1 SQ2 SQ3 SQ4
2015 81 0 0 0 0 0 0
2016 125 2 0 1 0 1 0
2017 167 1 0 0 0 1 0
2018 255 2 0 1 0 1 0
2019 315 3 0 3 0 1 0
2020 380 7 0 4 0 3 0
2021 485 9 0 6 1 8 0
2022 720 9 0 6 0 3 0
2023 1078 32 0 15 3 19 1
2024 625 25 0 16 2 11 3
Total 4231 90 0 52 6 48 4

A. Focus of Research

Papers on robustness and reliability received the most atten-
tion (376 relevant, 48 contributing), followed by integration
methods and strategic implementation factors. Organizational
measures and governance frameworks for trust-building re-
ceived the least attention (131 relevant, 4 contributing).

Fig. 2. Ratio between Relevant and Contributing Papers

B. Recent Developments

2023-2024 saw accelerated research activity across all
screening questions. 2023 produced 193 relevant and 32 con-
tributing papers, while 2024 already shows 150 relevant and
25 contributing papers, indicating rapidly growing interest.

C. Research Gaps

SQ4 in Tables I and II reveals a significant gap in research
on organizational measures and governance frameworks, sug-
gesting opportunities for future research on trust-building
aspects of AI adoption in cyber security.

D. Field Maturity

The ratio of contributing papers to relevant papers (14.9%)
gives insight into the field’s maturity. While there is growing
interest, as evidenced by the increase in relevant papers, the
slower emergence of contributing papers suggests that it is still
developing with considerable potential for in-depth studies.

E. Evolution of Research Focus

2015-2017 saw minimal relevant or contributing papers.
2018-2021 showed gradual increase, especially in strategic
factors, integration methods, and robustness techniques. 2022-
2024 demonstrated significant attention growth across all
questions, particularly in robustness and reliability techniques.

F. Summary of the Analysis

This analysis highlights rapid growth and evolution in the
research. While attention increases across all aspects, more
focused research on organizational measures and governance
frameworks for trust-building is needed. Recent surges suggest
accelerated development with the potential for significant
future advancements. For deeper insights into recent impactful
research, we conducted a full-text review of selected papers,
presented in the following chapter.

V. FULL-TEXT ANALYSIS USING CLAUDE 3.5 SONNET

Based on the selection criteria, we have short-listed and
obtained the full text of 58 research papers between 2020
and 2024. From processing each of the research papers using
Claude 3.5 Sonnet, we extracted their type, key themes, author
stances, and concise summary of their research results to
the RQs and definitions provided as part of the prompt. The
key insights are summarized in table III and future research
direction is outlined in table IV.

Note that during our manual review of the 58 research
papers, we encountered several things where our judgment
was misaligned with AI, notably [60], [95], [96], [77], [86]:

• There is one occurrence where we deemed the paper
is insightful and can contribute towards the robustness
[60] yet LLM determined the paper as not sufficiently
contributing. After careful inspection, we noted that the
paper was from 2020, before the advent of LLM-style
deep learning. Hence, LLM’s determination is correct.

• There are two occasions where we failed to identify
future research directions [95], [96]. LLM was correct to



TABLE III
KEY INSIGHTS FOR RESEARCH QUESTIONS

Key Insights References
RQ1: Key strategic factors to consider
AI can significantly enhance system but with new risks [10], [61], [62]
Data quality and availability for implementation [63], [64]
Interoperability with existing security infrastructure [65]
Carefully evaluate ethical and legal implications [66], [65]
Cost-benefit analysis is essential for decision-making [65]
Human oversight and expertise remains critical [67], [68]
RQ2: Key integration approaches while preventing overreliance
Using AI for automated threat detection and response [10], [69], [70]
AI-driven anomaly detection enhances security [71], [72]
AI can assist in vulnerability assessment and patching [73], [74]
Cyber deception techniques can be enhanced with AI [75], [65]
Human oversight is important to prevent overreliance [67], [68], [76]
Explainable AI improve trust and understanding [77], [78], [79]
Hybrid of AI and traditional methods are effective [80], [81]
RQ3: Key methods and practices for AI system robustness
Adversarial training and testing improve AI robustness [82], [83], [84]
Calibrated uncertainty quantification add reliability [85], [86]
Deep ensembles and temperature scaling help perfor-
mance

[86]

Need continuous monitoring and adaptation of AI
models

[87], [64]

Explainable AI aid in verification and debugging [77], [79]
Multiple AI models and perspectives add robustness [76], [78]
RQ4: Key organizational measures and governance frameworks
Need clear policies for AI use in cyber security [88], [89], [90]
Governance needs cross-sector work and standards [63], [66]
Regular security assessments and audits of AI systems [65]
Transparency and explainability of AI decisions build
trust

[77], [78]

Compliance with data protection and privacy regula-
tions

[90], [91]

Implement ethical guidelines for AI use in cyber
security

[10], [66]

determine that fake cyber threat intelligence needs deeper
research.

• There is one occurrence where we misidentified the
necessity of privacy-preserving methods in an explain-
able AI system [77], dismissing its importance while
LLM was correctly identified it as important for future
research.

• There is one occurrence where we did not fully un-
derstand the key insight of using deep ensembles and
temperature scaling [86]. Upon investigation, the team
did not understand those specific terminologies and LLM
was correctly identifying them.

VI. DISCUSSIONS AND RECOMMENDATIONS

A. Synthesis of Findings

Our review reveals a rapidly evolving landscape, with
research attention significantly increasing from 2015 to 2024.
Key areas requiring further attention:

1) Research Focus Imbalance: Substantial research exists
on technical aspects (robustness, integration), but a gap
persists in studies on organizational measures and gov-
ernance frameworks for building trust in AI-enhanced
cyber security solutions.

TABLE IV
RESEARCH GAPS AND FUTURE DIRECTIONS

Identified Gaps and Future Research Directions References
RQ1: Future research for strategic decision making
Develop a comprehensive decision-making framework [84], [90]
Investigate the long-term impacts of AI adoption [62], [10]
Interplay of AI and evolving threat landscapes [71], [92]
RQ2: Future research for integration approaches
Frameworks for balanced human-AI collaboration [78], [93], [94]
AI-generated fake cyber threat intelligence [95], [96]
Explore adaptive AI that evolve with threat landscapes [63], [64]
RQ3: Future research for AI robustness in cyber security
Benchmarks and metrics for AI in cyber security [84], [97], [98]
Transfer learning and meta-learning approaches [75]
Privacy-preserving AI for cyber security applications [10], [77]
Defending against adversarial attacks on AI models [82], [99],

[100]
RQ4: Future research for organizational readiness
Governance frameworks for AI in cyber security [90], [101]
Evaluation and certification of AI-driven solutions [97], [98]
Public trust in AI-enhanceed cyber security measures [102], [10]
Impact of AI on cyber security workforce training [69], [88]

2) Rapid Advancements and Field Maturity: Research
surge from 2022 to 2024 indicates accelerating develop-
ments, particularly in integration methods and robustness
techniques. The low ratio of contributing to relevant
papers suggests a developing field with potential for
further substantive contributions.

B. Methodological Analysis and Reflection

Our AI-assisted exploration and full-text review approach
offers both advantages and challenges. Here’s a comparison
of methodology A (GPT-4 for exploration) and B (Gemma
2:9b for filtering/searching and Claude 3.5 Sonnet for full-
text analysis):

• Immediacy: A provides immediate thematic review,
while B requires a database and full-text access.

• Efficiency/Breadth: A processes diverse sources, B fo-
cuses on academic literature only.

• Structure: A relies on GPT-4’s and its search engine
result, B uses a consistent assessment framework that
can be designed by the researcher.

• Information Uncovering: A offers unique cross-source
insights, B excels at detailed full-text extraction.

• Bias Mitigation: A has both model and search engine
bias risk, B has model and academic database bias risk.

• Context: A uses general knowledge and instructions, B
requires specific prompts and definitions.

• Depth: A may sacrifice depth for breadth, B allows in-
depth full-text analysis.

• False Negatives: A may miss sources not highly ranked
in search engine, B may miss non-matching papers.

• False Positives: A may include irrelevant sources due to
broad interpretations, B minimizes this through filtration.

• Academic Rigor: A includes non-academic sources, B
focuses on peer-reviewed literature.



Both methodologies complement traditional reviews. Future
work should refine these techniques while maintaining rigor,
potentially:

• Developing sophisticated AI prompting strategies
• Using multiple AI models for cross-validation
• Establishing AI-human analysis integration protocols
• Combining strengths of both methodologies

C. Implications and Future Directions

Table IV outlines specific research gaps and future direc-
tions. Our analysis reveals rapid field evolution (2022-2024),
the need for interdisciplinary approaches, and opportunities
for meta-research on AI-assisted systematic reviews in cyber-
security. Future work should prioritize addressing these gaps
while balancing innovation and practical implementation.

VII. CONCLUSION AND FUTURE WORKS

This survey examined contextualized AI’s potential in re-
shaping cyber defense strategies using a novel AI-assisted
methodology. Key findings include significant research at-
tention growth (2015-2024), focus on robustness, reliability,
and integration methods, with gaps in organizational trust and
governance studies. Our AI-assisted approach demonstrated
efficiency in processing diverse sources, highlighting the
potential of such methods in comprehensive literature reviews.
Future research should prioritize empirical studies comparing
traditional and AI-enhanced systems, exploring adaptive AI
for evolving threats, and developing governance frameworks.
While contextualized AI promises enhanced cyber defense
capabilities, effective implementation requires balancing AI
strengths with human oversight and risk mitigation. As this
field rapidly evolves, interdisciplinary collaboration among
cyber security experts, AI researchers, and policymakers will
be crucial in addressing the multifaceted challenges of AI
contextualization in cyber defense.
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