
EdgePrompt: Engineering Guardrail Techniques for Offline LLMs
in K-12 Educational Settings

Riza Alaudin Syah∗
alaudinsyah@graduate.utm.my
Universiti Teknologi Malaysia

Johor Bahru, Malaysia

Christoforus Yoga Haryanto∗
cyharyanto@zipthought.com.au

ZipThought
Melbourne, VIC, Australia

Emily Lomempow
ZipThought

Melbourne, VIC, Australia

Krishna Malik
Independent Researcher

Jakarta, Indonesia

Irvan Putra
Independent Researcher

Jakarta, Indonesia

Abstract
EdgePrompt is a prompt engineering framework that implements
pragmatic guardrails for Large Language Models (LLMs) in the
K-12 educational settings through structured prompting inspired
by neural-symbolic principles. The system addresses educational
disparities in Indonesia’s Frontier, Outermost, Underdeveloped
(3T) regions by enabling offline-capable content safety controls.
It combines: (1) content generation with structured constraint
templates, (2) assessment processing with layered validation, and
(3) lightweight storage for content and result management. The
framework implements a multi-stage verification workflow that
maintains safety boundaries while preserving model capabilities in
connectivity-constrained environments. Initial deployment targets
Grade 5 language instruction, demonstrating effective guardrails
through structured prompt engineering without formal symbolic
reasoning components.

CCS Concepts
• Social and professional topics → K-12 education; • Applied
computing→ Computer-assisted instruction; • Computing
methodologies → Natural language generation.

Keywords
Large Language Models, Edge Computing, K-12 Education, AI
Safety, Prompt Engineering, Content Filtering, Offline AI, Educa-
tional Technology, Guardrails

ACM Reference Format:
Riza Alaudin Syah, Christoforus Yoga Haryanto, Emily Lomempow, Kr-
ishna Malik, and Irvan Putra. 2025. EdgePrompt: Engineering Guardrail
Techniques for Offline LLMs in K-12 Educational Settings. In Companion
Proceedings of the ACM Web Conference 2025 (WWW Companion ’25), April
28-May 2, 2025, Sydney, NSW, Australia. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3701716.3717810

∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.
WWW Companion ’25, Sydney, NSW, Australia
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1331-6/2025/04
https://doi.org/10.1145/3701716.3717810

1 Introduction
In Indonesia’s remote 3T regions ("Terdepan, Terluar, Tertinggal" –
Frontier, Outermost, Underdeveloped), mostly unreliable internet
connectivity makes cloud-based solutions impractical for classroom
activities. EdgePrompt addresses this by enabling teachers to gen-
erate and evaluate educational content locally, while keeping cloud
services optional for complex tasks.

LLMs show promise in educational applications, but research
indicates that technical capabilities alone do not ensure classroom
adoption: instructors need control, transparency, and workflow
integration [11]. EdgePrompt bridges this gap through structured
prompts and automated safeguards, allowing educators to leverage
LLMs without deep technical expertise.

Recent advances in LLM guardrails have demonstrated feasible
domain-specific control mechanisms [3, 4]. However, these imple-
mentations typically assume access to the cloud infrastructure,
making them unsuitable for offline settings. Inspired by neural-
symbolic architectures [4], we define guardrail techniques as:

(1) Structured Prompting: templates embedding the safety
constraints with formal validation rules,

(2) Multi-stage Validation: sequential prompt-based checks
with explicit boundary conditions, and

(3) Edge Deployment Compatibility: optimized mechanisms
for operation in low-resource environments.

Our framework addresses three key challenges in K-12 education:
(1) ensuring robust content safety in offline settings, (2) enabling ac-
curate assessment with edge-based validation, and (3) maintaining
consistency in distributed evaluation processes.

The initial deployment of EdgePrompt targets Grade 5 language
instruction in Indonesia’s 3T regions [6, 12], where internet limita-
tions [1] require local LLM evaluation while selectively leveraging
cloud-based resources for content generation. By integrating struc-
tured prompt engineering with multi-stage validation, EdgePrompt
ensures that teachers can safely and effectively apply AI-driven
evaluation methods without requiring extensive technical expertise.

2 Methodology
EdgePrompt has two methodologies: (1) Prompt Development to
ensure the prompts are suitable for the objectives, and (2) Frame-
work Development to ensure the multi-stage prompting can
achieve the expected goals.

1635

https://orcid.org/0009-0008-3732-5729
https://orcid.org/0009-0009-8340-5313
https://orcid.org/0009-0003-0719-9681
https://orcid.org/0009-0008-8854-6943
https://orcid.org/0009-0000-6133-8513
https://doi.org/10.1145/3701716.3717810
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3701716.3717810
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3701716.3717810&domain=pdf&date_stamp=2025-05-23


WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia Riza Alaudin Syah, Christoforus Yoga Haryanto, Emily Lomempow, Krishna Malik, & Irvan Putra

Figure 1: Sequence diagram of the system.

2.1 Prompt Development
To evaluate various prompting approaches for offline LLMs in K-12
educational settings, we propose an evaluation framework. Inspired
but distinct from the SPADE methodology which uses fine-tuning
to optimize production models [7], our approach relies solely on
prompt engineering without modifying the base model parameters.

2.1.1 Evaluation Metrics. We measure prompt effectiveness using:

(1) Content Validity: Generated responses align with educa-
tional objectives and source materials.

(2) Safety andAppropriateness:Adherence to age-appropriate
and safe content guidelines.

(3) Efficiency: Response latency and computational resource
usage on edge devices.

(4) Teacher Satisfaction: Qualitative feedback regarding the
clarity and usability.

(5) Robustness: Consistency of the performance across varied
input conditions including variations of teacher requests and
student responses.

2.1.2 Experimental Protocol. The evaluation process consists of:

(1) Candidate Selection: Identify a diverse set of prompting
strategies tailored to our domain requirements.

(2) Functional Testing: Deploy candidate prompt in educa-
tional tasks to ensure usability.

(3) Assessment: Collect both quantitative data (using metrics
above) and qualitative feedback from educators.

(4) Statistical Comparison: Apply paired statistical analyses
to identify significant differences among strategies.

(5) Iterative Refinement: Refine prompt designs based on
evaluation insights.

2.2 Framework Development
We design a rigidly structured question generation and validation
pipeline leveraging cloud and edge LLMs for distinct operational
roles. Previous research focused on generating multiple choice
questions (MCQs) from educational text [2, 5], creating essay ques-
tions [10], and combining NLP and machine learning for structured
validation pipelines [9]. Furthering their work, we develop an archi-
tecture to generate essay questions and evaluate students’ answers
while enforcing safety through multi-stage template validation,
explicit constraint propagation, and formalized evaluation proto-
cols, as shown in Fig. 1. The core components implement template
processing, staged validation, and lightweight integration.

2.2.1 Teacher-Driven Content Generation.

(1) Question Template Definition:
(a) Domain-constrained content templates 𝑇𝑐 , e.g. "Write a

descriptive paragraph about [topic]",
(b) Answer space specification 𝐴𝑠 with explicit boundaries,

e.g. "Response must be 50-100 words, school-appropriate
vocabulary", and

(c) Formal learning objective mapping 𝑂 : 𝑇𝑐 → 𝐿 where
𝐿 defines permissible learning outcomes, e.g. "Student
demonstrates ability to use descriptive language"

(2) Cloud/Edge LLM Pipeline:
(a) Rubric formalization function 𝑅(𝑐𝑡 , 𝑣𝑝 ) where 𝑐𝑡 repre-

sents teacher criteria and 𝑣𝑝 validation parameters, e.g. "4
points: proper length, grade-level vocabulary",

(b) Transformation 𝑆 : 𝑅 → 𝑅′ to ensure edge compatibility,
e.g. "Scoring criteria is [condensed rubrics]", and

(c) Grading template generation 𝐺 (𝑅′) with explicit valida-
tion constraints, e.g. "Check: word count 50-100, formal
vocabulary"

1636



EdgePrompt: Engineering Guardrail Techniques for Offline LLMs in K-12 Educational Settings WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia

2.2.2 Student Answer Evaluation.

(1) Edge Validation:
(a) Question-answer verification 𝑉 (𝑞, 𝑎) → {0, 1}, e.g. "Does

answer describe requested topic?",
(b) Staged response validation sequence {𝑣1, . . . , 𝑣𝑛} against

the rubric 𝑅′, e.g. "Length → vocabulary → content →
scoring", and

(c) Boundary enforcement function 𝐵(𝑟 ) → {𝑣𝑎𝑙𝑖𝑑, 𝑖𝑛𝑣𝑎𝑙𝑖𝑑}
for responses 𝑟 , e.g. "Filter inappropriate content, off-topic
responses"

(2) Evaluation Logic:
(a) Apply rubric𝑅′ through transformation𝐸 (𝑟, 𝑅′), e.g. "Count

sensory details, check length requirements",
(b) Calibrated scoring function 𝑆 (𝑒) for evaluation 𝑒 , e.g. "3/4

points - meets length, 2 sensory details", and
(c) Verify the constraints satisfaction 𝐶 (𝑠, 𝑐𝑡 ) for score 𝑠 , e.g.

"Response meets safety and topic requirements"

2.2.3 Teacher Review System.

(1) Response Analysis:
(a) Edge case detection function 𝐷 (𝑟, 𝜃 ) with threshold 𝜃 , e.g.

"80% confidence threshold for automated scoring",
(b) Review triggers𝑇 (𝑑) → {𝑟𝑒𝑣𝑖𝑒𝑤, 𝑎𝑐𝑐𝑒𝑝𝑡}, e.g. "Borderline

scores, unusual patterns", and
(c) Track patterns 𝐾 (ℎ) over the evaluation history ℎ, e.g.

"Common vocabulary errors, length issues"
(2) System Adaptation:
(a) Rubric adjustment 𝐴 : 𝑅′ → 𝑅′′, e.g. "Add specific exam-

ples of sensory language",
(b) Criteria optimization function 𝑂 (𝐾, 𝜖) with convergence

parameter 𝜖 , e.g. "Update scoring based on review history",
and

(c) Template refinement process 𝑃 (𝑇𝑐 , ℎ) based on perfor-
mance history, e.g. "Clarify instructions from common
mistakes"

3 Implementation Details
We will implement the entire framework as an edge-deployable
application, considering pragmatic constraints of limited edge com-
puting capacity.

3.1 Core Components
(1) Template Processing:
(a) Prompt template definition 𝑇 (𝑝, 𝑐) encoding patterns 𝑝

and constraints 𝑐 ,
(b) Validation rule formalization 𝑉 (𝑟 ) for rubric 𝑟 , and
(c) Edge-compatible transformation protocols

(2) Validation Framework:
(a) Constraint checking 𝐶 (𝑖, 𝑟 ) for input 𝑖 ,
(b) Staged response validation {𝑣1, ..., 𝑣𝑛}, and
(c) Boundary enforcement 𝐵(𝑟 ) → {𝑣𝑎𝑙𝑖𝑑, 𝑖𝑛𝑣𝑎𝑙𝑖𝑑}

(3) Integration Architecture:
(a) State synchronization,
(b) Atomic storage, and
(c) Failure recovery

Ongoing implementation with the documentation and example
prompts can be seen in the project accessible at https://github.com/
build-club-ai-indonesia/edge-prompt GitHub repository.

Teaching materials are taken from https://buku.kemdikbud.go.id
Indonesia government education department website.

3.2 Deployment Architecture
The EdgeLLM deployment architecture implements:

(1) Optimized edge runtime for Llama 3.2 3B or similar LLM
with minimal resource footprint,

(2) Environment ensuring consistent model behavior,
(3) Storage system for offline operation, and
(4) Validation protocol maintaining the safety constraints.

3.3 Validation Approach
(1) FunctionalMetrics: Evaluating guardrail effectiveness such

as valid response ratios, offline stability, operational reliabil-
ity, and teacher workflow integration.

(2) Performance Analysis: Assessing edge deployment capa-
bilities via resource utilization, response latency profiles, and
scalability characteristics under varying loads.

(3) System Validation: Building on SPADE’s guardrail metrics
[7], we evaluate edge-specific indicators while maintaining
a pure prompt engineering approach without fine-tuning.

4 Discussion
We evaluate other guardrails methodologies such as constrained
decoding methods [8] which enforce output restrictions by limit-
ing the model’s token choices. However, they require continuous
updates to safe/unsafe token lists and can inadvertently restrict
creative expression. In contrast, our framework relies on structured
prompt engineering and multi-stage validation.

It is important to note that the final prompt design is still under
development, and future work will involve an empirical comparison
of multiple prompting strategies to determine the most effective
approach. Eventually, these may inform subsequent publications.

5 Conclusion and Future Work
In this expression of interest, we presented EdgePrompt, a frame-
work that combines structured prompt engineering with multi-
stage validation to enable offline LLM applications in K-12 edu-
cation. Designed for Indonesia’s remote 3T regions, our proposal
addresses the twin challenges of unreliable connectivity and limited
technical expertise among educators.

While our system has not yet been empirically validated, Edge-
Prompt lays a strong conceptual foundation. Our next steps include
iterative refinement, implementation, pilot deployments, gathering
teacher feedback to refine our approach, and optimizing edge perfor-
mance. Ultimately, our vision is to bridge the gap between advanced
LLM capabilities and real-world educational needs, paving the way
for scalable, teacher-friendly AI solutions in resource-constrained
environments.

Acknowledgments
BuildClub.ai as the training campus for AI learners, experts, builders.

1637

https://github.com/build-club-ai-indonesia/edge-prompt
https://github.com/build-club-ai-indonesia/edge-prompt
https://buku.kemdikbud.go.id
https://www.buildclub.ai/


WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia Riza Alaudin Syah, Christoforus Yoga Haryanto, Emily Lomempow, Krishna Malik, & Irvan Putra

References
[1] Livia Kristianti Raka Adji. 2024. Indonesia’s internet penetration hits 79.5 percent,

trend continues. Antara News (Jan. 2024). https://en.antaranews.com/news/
304593/indonesias-internet-penetration-hits-795-percent-trend-continues

[2] Ayan Kumar Bhowmick, Ashish Jagmohan, Aditya Vempaty, Prasenjit Dey, Leigh
Hall, Jeremy Hartman, Ravi Kokku, and Hema Maheshwari. 2023. Automat-
ing Question Generation From Educational Text. In Artificial Intelligence XL,
Max Bramer and Frederic Stahl (Eds.). Vol. 14381. Springer Nature Switzerland,
Cham, 437–450. doi:10.1007/978-3-031-47994-6_38 Series Title: Lecture Notes
in Computer Science.

[3] Yi Dong, Ronghui Mu, Gaojie Jin, Yi Qi, Jinwei Hu, Xingyu Zhao, Jie Meng,
Wenjie Ruan, and Xiaowei Huang. 2024. Building Guardrails for Large Language
Models. doi:10.48550/ARXIV.2402.01822

[4] Yi Dong, Ronghui Mu, Yanghao Zhang, Siqi Sun, Tianle Zhang, Changshun Wu,
Gaojie Jin, Yi Qi, Jinwei Hu, Jie Meng, Saddek Bensalem, and Xiaowei Huang. 2024.
Safeguarding Large Language Models: A Survey. doi:10.48550/ARXIV.2406.02622

[5] Ching Nam Hang, Chee Wei Tan, and Pei-Duo Yu. 2024. MCQGen: A Large
Language Model-Driven MCQ Generator for Personalized Learning. IEEE Access
12 (2024), 102261–102273. doi:10.1109/ACCESS.2024.3420709

[6] Kementerian Desa. 2025. Official Website of the Ministry of Villages. https:
//www.kemendesa.go.id

[7] Mohammad Niknazar, Paul V Haley, Latha Ramanan, Sang T. Truong, Yedendra
Shrinivasan, Ayan Kumar Bhowmick, Prasenjit Dey, Ashish Jagmohan, Hema
Maheshwari, Shom Ponoth, Robert Smith, Aditya Vempaty, Nick Haber, Sanmi
Koyejo, and Sharad Sundararajan. 2024. Building a Domain-specific Guardrail
Model in Production. doi:10.48550/ARXIV.2408.01452

[8] Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christo-
pher Meek, and Sumit Gulwani. 2022. Synchromesh: Reliable code generation
from pre-trained language models. doi:10.48550/ARXIV.2201.11227 Version
Number: 1.

[9] Lala Septem Riza, Yahya Firdaus, Rosa Ariani Sukamto, Wahyudin, and Khyrina
Airin Fariza Abu Samah. 2023. Automatic generation of short-answer questions in
reading comprehension using NLP and KNN. Multimedia Tools and Applications
82, 27 (Nov. 2023), 41913–41940. doi:10.1007/s11042-023-15191-6

[10] Nicy Scaria, Suma Dharani Chenna, and Deepak Subramani. 2024. Automated
Educational Question Generation at Different Bloom’s Skill Levels Using Large
Language Models: Strategies and Evaluation. In Artificial Intelligence in Educa-
tion, Andrew M. Olney, Irene-Angelica Chounta, Zitao Liu, Olga C. Santos, and
Ig Ibert Bittencourt (Eds.). Vol. 14830. Springer Nature Switzerland, Cham, 165–
179. doi:10.1007/978-3-031-64299-9_12 Series Title: Lecture Notes in Computer
Science.

[11] Xu Wang, Simin Fan, Jessica Houghton, and Lu Wang. 2022. Towards Process-
Oriented, Modular, and Versatile Question Generation that Meets Educational
Needs. In Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies.
Association for Computational Linguistics, Seattle, United States, 291–302. doi:10.
18653/v1/2022.naacl-main.22

[12] Joko Widodo. 2020. Peraturan Presiden (PERPRES) Nomor 63 Tahun 2020 Pene-
tapan Daerah Tertinggal Tahun 2020-2024. https://peraturan.bpk.go.id/Details/
136563/perpres-no-63-tahun-2020 Publication Title: Database Peraturan | JDIH
BPK.

1638

https://en.antaranews.com/news/304593/indonesias-internet-penetration-hits-795-percent-trend-continues
https://en.antaranews.com/news/304593/indonesias-internet-penetration-hits-795-percent-trend-continues
https://doi.org/10.1007/978-3-031-47994-6_38
https://doi.org/10.48550/ARXIV.2402.01822
https://doi.org/10.48550/ARXIV.2406.02622
https://doi.org/10.1109/ACCESS.2024.3420709
https://www.kemendesa.go.id
https://www.kemendesa.go.id
https://doi.org/10.48550/ARXIV.2408.01452
https://doi.org/10.48550/ARXIV.2201.11227
https://doi.org/10.1007/s11042-023-15191-6
https://doi.org/10.1007/978-3-031-64299-9_12
https://doi.org/10.18653/v1/2022.naacl-main.22
https://doi.org/10.18653/v1/2022.naacl-main.22
https://peraturan.bpk.go.id/Details/136563/perpres-no-63-tahun-2020
https://peraturan.bpk.go.id/Details/136563/perpres-no-63-tahun-2020

	Abstract
	1 Introduction
	2 Methodology
	2.1 Prompt Development
	2.2 Framework Development

	3 Implementation Details
	3.1 Core Components
	3.2 Deployment Architecture
	3.3 Validation Approach

	4 Discussion
	5 Conclusion and Future Work
	Acknowledgments
	References



